Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659015

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Fibrose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Miocárdio , Cordão Umbilical , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/genética , Humanos , Masculino , Fibrose/terapia , Camundongos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Camundongos Endogâmicos C57BL
2.
Ecology ; : e4299, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650359

RESUMO

Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.

3.
J Transl Med ; 22(1): 313, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532420

RESUMO

Endothelial colony-forming cells (ECFCs) are progenitors of endothelial cells with significant proliferative and angiogenic ability. ECFCs are a promising treatment option for various diseases, such as ischemic heart disease and peripheral artery disease. However, some barriers hinder the clinical application of ECFC therapeutics. One of the current obstacles is that ECFCs are dysfunctional due to the underlying disease states. ECFCs exhibit dysfunctional phenotypes in pathologic states, which include but are not limited to the following: premature neonates and pregnancy-related diseases, diabetes mellitus, cancers, haematological system diseases, hypoxia, pulmonary arterial hypertension, coronary artery diseases, and other vascular diseases. Besides, ECFCs are heterogeneous among donors, tissue sources, and within cell subpopulations. Therefore, it is important to elucidate the underlying mechanisms of ECFC dysfunction and characterize their heterogeneity to enable clinical application. In this review, we summarize the current and potential application of transcriptomic analysis in the field of ECFC biology. Transcriptomic analysis is a powerful tool for exploring the key molecules and pathways involved in health and disease and can be used to characterize ECFC heterogeneity.


Assuntos
Células Endoteliais , Perfilação da Expressão Gênica , Recém-Nascido , Humanos , Células Endoteliais/metabolismo , Células Cultivadas , Neovascularização Fisiológica
4.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540337

RESUMO

Pustular skin diseases, with pustular psoriasis (PP) being the prototype, are immune-mediated diseases characterized by the presence of multiple pustules, resulting from neutrophil accumulation in the layer of epidermis. Sterile skin pustular eruption, like PP, is also observed in 20-30% of patients with adult-onset immunodeficiency syndrome (AOID) and anti-interferon γ autoantibodies (IFN-γ), leading to challenges in classification and diagnosis. While the mechanism underlying this similar phenotype remains unknown, genetic factors in relation to the immune system are suspected of playing an important role. Here, the association between human leukocyte antigen (HLA) genes, which play essential roles in antigen presentation, contributing to immune response, and the presence of skin pustules in AOID and PP was revealed. HLA genotyping of 41 patients from multiple centers in Thailand who presented with multiple sterile skin pustules (17 AOID patients and 24 PP patients) was conducted using a next-generation-sequencing-based approach. In comparison to healthy controls, HLA-B*13:01 (OR = 3.825, 95%CI: 2.08-7.035), C*03:04 (OR = 3.665, 95%CI: 2.102-6.39), and DQB1*05:02 (OR = 2.134, 95%CI: 1.326-3.434) were significantly associated with the group of aforementioned conditions having sterile cutaneous pustules, suggesting a common genetic-related mechanism. We found that DPB1*05:01 (OR = 3.851, p = 0.008) and DRB1*15:02 (OR = 3.195, p = 0.033) have a significant association with pustular reaction in AOID patients, with PP patients used as a control. A variant in the DRB1 gene, rs17885482 (OR = 9.073, p = 0.005), was observed to be a risk factor for PP when using AOID patients who had pustular reactions as a control group. DPB1*05:01 and DRB1*15:02 alleles, as well as the rs17885482 variant in the DRB1 gene, were proposed as novel biomarkers to differentiate PP and AOID patients who first present with multiple sterile skin pustules without known documented underlying conditions.


Assuntos
Psoríase , Dermatopatias Vesiculobolhosas , Adulto , Humanos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA/genética , Psoríase/diagnóstico , Psoríase/genética , Autoanticorpos
5.
Bull Math Biol ; 86(4): 40, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489047

RESUMO

Use of nonlinear statistical methods and models are ubiquitous in scientific research. However, these methods may not be fully understood, and as demonstrated here, commonly-reported parameter p-values and confidence intervals may be inaccurate. The gentle introduction to nonlinear regression modelling and comprehensive illustrations given here provides applied researchers with the needed overview and tools to appreciate the nuances and breadth of these important methods. Since these methods build upon topics covered in first and second courses in applied statistics and predictive modelling, the target audience includes practitioners and students alike. To guide practitioners, we summarize, illustrate, develop, and extend nonlinear modelling methods, and underscore caveats of Wald statistics using basic illustrations and give key reasons for preferring likelihood methods. Parameter profiling in multiparameter models and exact or near-exact versus approximate likelihood methods are discussed and curvature measures are connected with the failure of the Wald approximations regularly used in statistical software. The discussion in the main paper has been kept at an introductory level and it can be covered on a first reading; additional details given in the Appendices can be worked through upon further study. The associated online Supplementary Information also provides the data and R computer code which can be easily adapted to aid researchers to fit nonlinear models to their data.


Assuntos
Modelos Biológicos , Dinâmica não Linear , Humanos , Simulação por Computador , Conceitos Matemáticos , Funções Verossimilhança , Modelos Estatísticos
6.
Stem Cell Res Ther ; 15(1): 66, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443965

RESUMO

BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs) a potentially effective disease-modulating therapy for diabetic nephropathy (DN) but their clinical translation has been hampered by incomplete understanding of the optimal timing of administration and in vivo mechanisms of action. This study aimed to elucidate the reno-protective potency and associated mechanisms of single intravenous injections of human umbilical cord-derived MSCs (hUC-MSCs) following shorter and longer durations of diabetes. METHODS: A streptozotocin (STZ)-induced model of diabetes and DN was established in C57BL/6 mice. In groups of diabetic animals, human (h)UC-MSCs or vehicle were injected intravenously at 8 or 16 weeks after STZ along with vehicle-injected non-diabetic animals. Diabetes-related kidney abnormalities was analyzed 2 weeks later by urine and serum biochemical assays, histology, transmission electron microscopy and immunohistochemistry. Serum concentrations of pro-inflammatory and pro-fibrotic cytokines were quantified by ELISA. The expression of autophagy-related proteins within the renal cortices was investigated by immunoblotting. Bio-distribution of hUC-MSCs in kidney and other organs was evaluated in diabetic mice by injection of fluorescent-labelled cells. RESULTS: Compared to non-diabetic controls, diabetic mice had increases in urine albumin creatinine ratio (uACR), mesangial matrix deposition, podocyte foot process effacement, glomerular basement membrane thickening and interstitial fibrosis as well as reduced podocyte numbers at both 10 and 18 weeks after STZ. Early (8 weeks) hUC-MSC injection was associated with reduced uACR and improvements in multiple glomerular and renal interstitial abnormalities as well as reduced serum IL-6, TNF-α, and TGF-ß1 compared to vehicle-injected animals. Later (16 weeks) hUC-MSC injection also resulted in reduction of diabetes-associated renal abnormalities and serum TGF-ß1 but not of serum IL-6 and TNF-α. At both time-points, the kidneys of vehicle-injected diabetic mice had higher ratio of p-mTOR to mTOR, increased abundance of p62, lower abundance of ULK1 and Atg12, and reduced ratio of LC3B to LC3A compared to non-diabetic animals, consistent with diabetes-associated suppression of autophagy. These changes were largely reversed in the kidneys of hUC-MSC-injected mice. In contrast, neither early nor later hUC-MSC injection had effects on blood glucose and body weight of diabetic animals. Small numbers of CM-Dil-labeled hUC-MSCs remained detectable in kidneys, lungs and liver of diabetic mice at 14 days after intravenous injection. CONCLUSIONS: Single intravenous injections of hUC-MSCs ameliorated glomerular abnormalities and interstitial fibrosis in a mouse model of STZ-induced diabetes without affecting hyperglycemia, whether administered at relatively short or longer duration of diabetes. At both time-points, the reno-protective effects of hUC-MSCs were associated with reduced circulating TGF-ß1 and restoration of intra-renal autophagy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Rim/anormalidades , Células-Tronco Mesenquimais , Anormalidades Urogenitais , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Nefropatias Diabéticas/terapia , Injeções Intravenosas , Fator de Crescimento Transformador beta1 , Diabetes Mellitus Experimental/terapia , Interleucina-6 , Fator de Necrose Tumoral alfa , Autofagia , Fibrose , Serina-Treonina Quinases TOR
7.
Sci Adv ; 10(1): eadi4919, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181083

RESUMO

Cell-based therapies hold promise for many chronic conditions; however, the continued need for immunosuppression along with challenges in replacing cells to improve durability or retrieving cells for safety are major obstacles. We subcutaneously implanted a device engineered to exploit the innate transcapillary hydrostatic and colloid osmotic pressure generating ultrafiltrate to mimic interstitium. Long-term stable accumulation of ultrafiltrate was achieved in both rodents and nonhuman primates (NHPs) that was chemically similar to serum and achieved capillary blood oxygen concentration. The majority of adult pig islet grafts transplanted in non-immunosuppressed NHPs resulted in xenograft survival >100 days. Stable cytokine levels, normal neutrophil to lymphocyte ratio, and a lack of immune cell infiltration demonstrated successful immunoprotection and averted typical systemic changes related to xenograft transplant, especially inflammation. This approach eliminates the need for immunosuppression and permits percutaneous access for loading, reloading, biopsy, and recovery to de-risk the use of "unlimited" xenogeneic cell sources to realize widespread clinical translation of cell-based therapies.


Assuntos
Terapia de Imunossupressão , Primatas , Adulto , Animais , Humanos , Suínos , Xenoenxertos , Transplante Heterólogo , Biópsia
8.
Stem Cell Res Ther ; 14(1): 353, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072933

RESUMO

BACKGROUND: Ischemia/reperfusion injury is the leading cause of acute kidney injury (AKI). The current standard of care focuses on supporting kidney function, stating the need for more efficient and targeted therapies to enhance repair. Mesenchymal stromal cells (MSCs) and their secretome, either as conditioned medium (CM) or extracellular vesicles (EVs), have emerged as promising options for regenerative therapy; however, their full potential in treating AKI remains unknown. METHODS: In this study, we employed an in vitro model of chemically induced ischemia using antimycin A combined with 2-deoxy-D-glucose to induce ischemic injury in proximal tubule epithelial cells. Afterwards we evaluated the effects of MSC secretome, CM or EVs obtained from adipose tissue, bone marrow, and umbilical cord, on ameliorating the detrimental effects of ischemia. To assess the damage and treatment outcomes, we analyzed cell morphology, mitochondrial health parameters (mitochondrial activity, ATP production, mass and membrane potential), and overall cell metabolism by metabolomics. RESULTS: Our findings show that ischemic injury caused cytoskeletal changes confirmed by disruption of the F-actin network, energetic imbalance as revealed by a 50% decrease in the oxygen consumption rate, increased oxidative stress, mitochondrial dysfunction, and reduced cell metabolism. Upon treatment with MSC secretome, the morphological derangements were partly restored and ATP production increased by 40-50%, with umbilical cord-derived EVs being most effective. Furthermore, MSC treatment led to phenotype restoration as indicated by an increase in cell bioenergetics, including increased levels of glycolysis intermediates, as well as an accumulation of antioxidant metabolites. CONCLUSION: Our in vitro model effectively replicated the in vivo-like morphological and molecular changes observed during ischemic injury. Additionally, treatment with MSC secretome ameliorated proximal tubule damage, highlighting its potential as a viable therapeutic option for targeting AKI.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Secretoma , Isquemia/terapia , Isquemia/metabolismo , Vesículas Extracelulares/metabolismo , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Metabolismo Energético , Oxirredução , Células-Tronco Mesenquimais/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Ir J Med Sci ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141097

RESUMO

BACKGROUND: The treatment of locally advanced rectal cancer (LARC) has evolved following recent landmark trials of total neoadjuvant therapy (TNT)-the delivery of preoperative chemotherapy sequenced with radiation. AIM: To assess the preferences of colorectal surgery (CRS), radiation oncology (RO) and medical oncology (MO) specialists attending the All-Ireland Colorectal Cancer Conference (AICCC) 2022 regarding the neoadjuvant management of LARC. METHODS: A live electronic survey explored the preferred treatment approach and TNT regimen for early-, intermediate-, bad-, and advanced-risk categories of rectal cancer according to the European Society of Medical Oncology (ESMO) guidelines. The survey was preceded by an update from lead investigators of TNT trials (OPRA, PRODIGE-23 and RAPIDO), who then participated in a multidisciplinary panel discussion. RESULTS: Ten CRS, 7 RO and 15 MO (32 of 45 specialists) participated fully in the survey resulting in a response rate of 71%. Ninety-four percent, 76% and 53% of specialists preferred a TNT approach for patients with advanced, bad, and intermediate-risk rectal cancer, respectively. A consolidation TNT regimen of long-course chemoradiotherapy followed by chemotherapy was the most preferred regimen. Upfront surgery was preferred by 77% for early-risk disease. CONCLUSION: This survey illustrated the general acceptance of TNT by rectal cancer specialists attending the AICCC as a valuable treatment strategy for higher-risk category LARC. Whilst the treatment of LARC changes, it remains best practice to individualize care, incorporating the selective use of TNT as discussed by an MDT and in keeping with the patient's goals of care.

10.
Metabolites ; 13(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37999231

RESUMO

A new approach for assisting in the diagnosis of coronary artery disease (CAD) as a cause of death is essential in cases where complete autopsy examinations are not feasible. The purine pathway has been associated with CAD patients, but the understanding of this pathway in postmortem changes needs to be explored. This study investigated the levels of blood purine metabolites in CAD after death. Heart blood samples (n = 60) were collected and divided into CAD (n = 23) and control groups (n = 37). Purine metabolites were measured via proton nuclear magnetic resonance. Guanosine triphosphate (GTP), nicotinamide adenine dinucleotide (NAD), and xanthine levels significantly decreased (p < 0.05); conversely, adenine and deoxyribose 5-phosphate levels significantly increased (p < 0.05) in the CAD group compared to the control group. Decreasing xanthine levels may serve as a marker for predicting the cause of death in CAD (AUC = 0.7). Our findings suggest that the purine pathway was interrupted by physiological processes after death, causing the metabolism of the deceased to differ from that of the living. Additionally, xanthine levels should be studied further to better understand their relationship with CAD and used as a biomarker for CAD diagnosis under decomposition and skeletonization settings.

11.
J Transl Med ; 21(1): 723, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840135

RESUMO

BACKGROUND: Extracellular vesicles (EV) are considered a cell-free alternative to mesenchymal stromal cell (MSC) therapy. Numerous reports describe the efficacy of EV in conferring immunomodulation and promoting angiogenesis, yet others report these activities to be conveyed in EV-free bioproducts. We hypothesized that this discrepancy may depend either on the method of isolation or rather the relative impact of the individual bioactive components within the MSC secretome. METHODS: To answer this question, we performed an inter-laboratory study evaluating EV generated from adipose stromal cells (ASC) by either sequential ultracentrifugation (UC) or size-exclusion chromatography (SEC). The effect of both EV preparations on immunomodulation and angiogenesis in vitro was compared to that of the whole secretome and of the EV-free protein fraction after SEC isolation. RESULTS: In the current study, neither the EV preparations, the secretome or the protein fraction were efficacious in inhibiting mitogen-driven T cell proliferation. However, EV generated by SEC stimulated macrophage phagocytic activity to a similar extent as the secretome. In turn, tube formation and wound healing were strongly promoted by the ASC secretome and protein fraction, but not by EV. Within the secretome/protein fraction, VEGF was identified as a potential driver of angiogenesis, and was absent in both EV preparations. CONCLUSIONS: Our data indicate that the effects of ASC on immunomodulation and angiogenesis are EV-independent. Specific ASC-EV effects need to be dissected for their use as cell-free therapeutics.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Adipócitos , Células-Tronco Mesenquimais/metabolismo , Cicatrização , Vesículas Extracelulares/metabolismo , Proteínas/farmacologia
12.
Stem Cell Res ; 71: 103191, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37659345

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a group of severe, early-onset epilepsies which are often caused by genetic mutations in ion channels. Mutations in KCNQ2, which encodes the voltage-gated potassium channel Kv7.2, is known to cause DEE. Here, we generated three iPSC lines from dermal fibroblasts of a 5 year-old male patient with the KCNQ2 c.881C > T (p.Ala294Val) pathogenic heterozygous variant and three iPSC lines from a healthy sibling control. These iPSC lines have been validated by SNP karyotyping, STR analysis, expression of pluripotent genes, the capacity to differentiate into three germ layers and confirmation of the mutation in the patient.


Assuntos
Encefalopatias , Células-Tronco Pluripotentes Induzidas , Masculino , Humanos , Pré-Escolar , Camadas Germinativas , Heterozigoto , Cariotipagem , Canal de Potássio KCNQ2/genética
13.
Stem Cell Reports ; 18(9): 1870-1883, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595581

RESUMO

Sporadic amyotrophic lateral sclerosis (sALS) is the majority of ALS, and the lack of appropriate disease models has hindered its research. Induced pluripotent stem cell (iPSC) technology now permits derivation of iPSCs from somatic cells of sALS patients to investigate disease phenotypes and mechanisms. Most existing differentiation protocols are time-consuming or low efficient in generating motor neurons (MNs). Here we report a rapid and simple protocol to differentiate MNs in monolayer culture using small molecules, which led to nearly pure neural stem cells in 6 days, robust OLIG2+ pMNs (73%-91%) in 12 days, enriched CHAT+ cervical spinal MNs (sMNs) (88%-97%) in 18 days, and functionally mature sMNs in 28 days. This simple and reproducible protocol permitted the identification of hyperexcitability phenotypes in our sALS iPSC-derived sMNs, and its application in neurodegenerative diseases should facilitate in vitro disease modeling, drug screening, and the development of cell therapy.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Osteocondrodisplasias , Humanos , Neurônios Motores , Autofagia , Diferenciação Celular
14.
Int J Biol Macromol ; 251: 126353, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591431

RESUMO

Cell sheet tissue engineering requires prolonged in vitro culture for the development of implantable devices. Unfortunately, lengthy in vitro culture is associated with cell phenotype loss and substantially higher cost of goods, which collectively hinder clinical translation and commercialisation of tissue engineered medicines. Although macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition, whilst maintaining cellular phenotype, the optimal macromolecular crowding agent still remains elusive. Herein, we evaluated the biophysical properties of seven different carrageenan molecules at five different concentrations and their effect on human umbilical cord-derived mesenchymal stromal cell morphology, viability, metabolic activity, proliferation, extracellular matrix deposition and surface marker expression. All types of carrageenan (CR) assessed demonstrated a hydrodynamic radius increase as a function of increasing concentration; high polydispersity; and negative charge. Two iota CRs were excluded from further analysis due to poor solubility in cell culture. Among the remaining five carrageenans, the lambda medium viscosity type at concentrations of 10 and 50 µg/ml did not affect cell morphology, viability, metabolic activity, proliferation and expression of surface markers and significantly increased the deposition of collagen types I, III and IV, fibronectin and laminin. Our data highlight the potential of lambda medium viscosity carrageenan as a macromolecular crowding agent for the accelerated development of functional tissue engineered medicines.

15.
Stem Cell Rev Rep ; 19(8): 2774-2789, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653182

RESUMO

Human induced pluripotent stem cells (hiPSCs) have been widely used in cardiac disease modelling, drug discovery, and regenerative medicine as they can be differentiated into patient-specific cardiomyocytes. Long QT syndrome type 3 (LQT3) is one of the more malignant congenital long QT syndrome (LQTS) variants with an SCN5A gain-of-function effect on the gated sodium channel. Moreover, the predominant pathogenic variants in LQTS genes are single nucleotide substitutions (missense) and small insertion/deletions (INDEL). CRISPR/Cas9 genome editing has been utilised to create isogenic hiPSCs to control for an identical genetic background and to isolate the pathogenicity of a single nucleotide change. In this study, we described an optimized and rapid protocol to introduce a heterozygous LQT3-specific variant into healthy control hiPSCs using ribonucleoprotein (RNP) and single-stranded oligonucleotide (ssODN). Based on this protocol, we successfully screened hiPSCs carrying a heterozygous LQT3 pathogenic variant (SCN5A±) with high efficiency (6 out of 69) and confirmed no off-target effect, normal karyotype, high alkaline phosphatase activity, unaffected pluripotency, and in vitro embryonic body formation capacity within 2 weeks. In addition, we also provide protocols to robustly differentiate hiPSCs into cardiomyocytes and evaluate the electrophysiological characteristics using Multi-electrode Array. This protocol is also applicable to introduce and/or correct other disease-specific variants into hiPSCs for future pharmacological screening and gene therapeutic development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Nucleotídeos , Sistemas CRISPR-Cas/genética , Síndrome do QT Longo/genética
16.
J Am Soc Nephrol ; 34(10): 1733-1751, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560967

RESUMO

SIGNIFICANCE STATEMENT: Mesenchymal stromal cells (MSCs) may offer a novel therapy for diabetic kidney disease (DKD), although clinical translation of this approach has been limited. The authors present findings from the first, lowest dose cohort of 16 adults with type 2 diabetes and progressive DKD participating in a randomized, placebo-controlled, dose-escalation phase 1b/2a trial of next-generation bone marrow-derived, anti-CD362 antibody-selected allogeneic MSCs (ORBCEL-M). A single intravenous (iv) infusion of 80×10 6 cells was safe and well-tolerated, with one quickly resolved infusion reaction in the placebo group and no subsequent treatment-related serious adverse events (SAEs). Compared with placebo, the median annual rate of decline in eGFR was significantly lower with ORBCEL-M, although mGFR did not differ. The results support further investigation of ORBCEL-M in this patient population in an appropriately sized phase 2b study. BACKGROUND: Systemic therapy with mesenchymal stromal cells may target maladaptive processes involved in diabetic kidney disease progression. However, clinical translation of this approach has been limited. METHODS: The Novel Stromal Cell Therapy for Diabetic Kidney Disease (NEPHSTROM) study, a randomized, placebo-controlled phase 1b/2a trial, assesses safety, tolerability, and preliminary efficacy of next-generation bone marrow-derived, anti-CD362-selected, allogeneic mesenchymal stromal cells (ORBCEL-M) in adults with type 2 diabetes and progressive diabetic kidney disease. This first, lowest dose cohort of 16 participants at three European sites was randomized (3:1) to receive intravenous infusion of ORBCEL-M (80×10 6 cells, n =12) or placebo ( n =4) and was followed for 18 months. RESULTS: At baseline, all participants were negative for anti-HLA antibodies and the measured GFR (mGFR) and estimated GFR were comparable between groups. The intervention was safe and well-tolerated. One placebo-treated participant had a quickly resolved infusion reaction (bronchospasm), with no subsequent treatment-related serious adverse events. Two ORBCEL-M recipients died during follow-up of causes deemed unrelated to the trial intervention; one recipient developed low-level anti-HLA antibodies. The median annual rate of kidney function decline after ORBCEL-M therapy compared with placebo did not differ by mGFR, but was significantly lower by eGFR estimated by the Chronic Kidney Disease Epidemiology Collaboration and Modification of Diet in Renal Disease equations. Immunologic profiling provided evidence of preservation of circulating regulatory T cells, lower natural killer T cells, and stabilization of inflammatory monocyte subsets in those receiving the cell therapy compared with placebo. CONCLUSIONS: Findings indicate safety and tolerability of intravenous ORBCEL-M cell therapy in the trial's lowest dose cohort. The rate of decline in eGFR (but not mGFR) over 18 months was significantly lower among those receiving cell therapy compared with placebo. Further studies will be needed to determine the therapy's effect on CKD progression. CLINICAL TRIAL REGISTRATION NUMBER: ClinicalTrial.gov NCT02585622 .


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Adulto , Humanos , Nefropatias Diabéticas/terapia , Diabetes Mellitus Tipo 2/complicações , Taxa de Filtração Glomerular
17.
Cancer Metastasis Rev ; 42(4): 1189-1200, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37394540

RESUMO

Carcinoma of unknown primary (CUP) is a heterogeneous group of metastatic cancers in which the site of origin is not identifiable. These carcinomas have a poor outcome due to their late presentation with metastatic disease, difficulty in identifying the origin and delay in treatment. The aim of the pathologist is to broadly classify and subtype the cancer and, where possible, to confirm the likely primary site as this information best predicts patient outcome and guides treatment. In this review, we provide histopathologists with diagnostic practice points which contribute to identifying the primary origin in such cases. We present the current clinical evaluation and management from the point of view of the oncologist. We discuss the role of the pathologist in the diagnostic pathway including the control of pre-analytical conditions, assessment of sample adequacy, diagnosis of cancer including diagnostic pitfalls, and evaluation of prognostic and predictive markers. An integrated diagnostic report is ideal in cases of CUP, with results discussed at a forum such as a molecular tumour board and matched with targeted treatment. This highly specialized evolving area ultimately leads to personalized oncology and potentially improved outcomes for patients.


Assuntos
Carcinoma , Neoplasias Primárias Desconhecidas , Humanos , Neoplasias Primárias Desconhecidas/diagnóstico , Neoplasias Primárias Desconhecidas/patologia , Neoplasias Primárias Desconhecidas/terapia , Patologistas , Carcinoma/diagnóstico , Carcinoma/metabolismo , Prognóstico
18.
Am J Hum Genet ; 110(8): 1249-1265, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506692

RESUMO

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.


Assuntos
Hiperlipoproteinemia Tipo II , Neoplasias , Humanos , Oregon/epidemiologia , Detecção Precoce de Câncer , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/genética
19.
Stem Cell Res Ther ; 14(1): 120, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143116

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs), commonly sourced from adipose tissue, bone marrow and umbilical cord, have been widely used in many medical conditions due to their therapeutic potential. Yet, the still limited understanding of the underlying mechanisms of action hampers clinical translation. Clinical potency can vary considerably depending on tissue source, donor attributes, but importantly, also culture conditions. Lack of standard procedures hinders inter-study comparability and delays the progression of the field. The aim of this study was A- to assess the impact on MSC characteristics when different laboratories, performed analysis on the same MSC material using harmonised culture conditions and B- to understand source-specific differences. METHODS: Three independent institutions performed a head-to-head comparison of human-derived adipose (A-), bone marrow (BM-), and umbilical cord (UC-) MSCs using harmonised culture conditions. In each centre, cells from one specific tissue source were isolated and later distributed across the network to assess their biological properties, including cell expansion, immune phenotype, and tri-lineage differentiation (part A). To assess tissue-specific function, angiogenic and immunomodulatory properties and the in vivo biodistribution were compared in one expert lab (part B). RESULTS: By implementing a harmonised manufacturing workflow, we obtained largely reproducible results across three independent laboratories in part A of our study. Unique growth patterns and differentiation potential were observed for each tissue source, with similar trends observed between centres. Immune phenotyping verified expression of typical MSC surface markers and absence of contaminating surface markers. Depending on the established protocols in the different laboratories, quantitative data varied slightly. Functional experiments in part B concluded that conditioned media from BM-MSCs significantly enhanced tubulogenesis and endothelial migration in vitro. In contrast, immunomodulatory studies reported superior immunosuppressive abilities for A-MSCs. Biodistribution studies in healthy mice showed lung entrapment after administration of all three types of MSCs, with a significantly faster clearance of BM-MSCs. CONCLUSION: These results show the heterogeneous behaviour and regenerative properties of MSCs as a reflection of intrinsic tissue-origin properties while providing evidence that the use of harmonised culture procedures can reduce but do not eliminate inter-lab and operator differences.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Células Cultivadas , Distribuição Tecidual , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células , Células da Medula Óssea , Cordão Umbilical
20.
Stem Cell Res ; 69: 103093, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071954

RESUMO

KCNQ2 encodes the potassium-gated voltage channel Kv7.2, responsible for the M-current, which contributes to neuronal resting membrane potential. Pathogenic variants in KCNQ2 cause early onset epilepsies, developmental and epileptic encephalopathies. In this study, we generated three iPSC lines from dermal fibroblasts of a 5 year-old female patient with the KCNQ2 c.638C > T (p.Arg213Gln) pathogenic heterozygous variant and three iPSC lines from a healthy sibling control. These iPSC lines were validated by confirming the targeted mutation, SNP karyotyping, STR analysis, pluripotent gene expression, differentiation capacity into three germ layers, and were free of transgene integration and Mycoplasma.


Assuntos
Encefalopatias , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Pré-Escolar , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Diferenciação Celular , Encefalopatias/genética , Mutação , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...